20,415 research outputs found

    ACUTE Heart Failure Risk Stratification: A Step Closer to the Holy Grail?

    Get PDF

    Dependence of heat transport on the strength and shear rate of prescribed circulating flows

    Full text link
    We study numerically the dependence of heat transport on the maximum velocity and shear rate of physical circulating flows, which are prescribed to have the key characteristics of the large-scale mean flow observed in turbulent convection. When the side-boundary thermal layer is thinner than the viscous boundary layer, the Nusselt number (Nu), which measures the heat transport, scales with the normalized shear rate to an exponent 1/3. On the other hand, when the side-boundary thermal layer is thicker, the dependence of Nu on the Peclet number, which measures the maximum velocity, or the normalized shear rate when the viscous boundary layer thickness is fixed, is generally not a power law. Scaling behavior is obtained only in an asymptotic regime. The relevance of our results to the problem of heat transport in turbulent convection is also discussed.Comment: 7 pages, 7 figures, submitted to European Physical Journal

    Energy absorption by polymer crazing

    Get PDF
    During the past thirty years, a tremendous amount of research was done on the development of crazing in polymers. The phenomenon of crazing was recognized as an unusual deformation behavior associated with a process of molecular orientation in a solid to resist failure. The craze absorbs a fairly large amount of energy during the crazing process. When a craze does occur the surrounding bulk material is usually stretched to several hundred percent of its original dimension and creates a new phase. The total energy absorbed by a craze during the crazing process in creep was calculated analytically with the help of some experimental measurements. A comparison of the energy absorption by the new phase and that by the original bulk uncrazed medium is made

    Mihai Gheorghiade, MD-Life and Concepts

    Get PDF
    How do you capture an idea, shape it, and then bring it into the world? Of his many talents, this ability was a fundamental characteristic of Mihai Gheorghiade. A quick glance through PubMed confirms his prodigious output, likely to overwhelm any novice or even expert scholar. His contribution to heart failure, especially acute heart failure (AHF), is profound, He authored several major concepts in acute heart failure, disseminated further by his students. Most concepts remained indelibly linked to his name: Digoxin trials research(1–3), AHFS (acute heart failure syndromes) definition(4), hemodynamic congestion(5), hospitalized heart failure (HHF) (6), the vulnerable phase(7,8), neutral hemodynamic agents(9), registries(10–12) and pre-trial registries(13), the “6-axis model”(14) and then the “8-axis model”(15). His work shaped the field of AHF

    Strength and Microstructure of Geopolymer Based on Fly Ash and Metakaolin

    Get PDF
    The production of Portland cement is widely regarded as a major source of greenhouse gas emissions. This contributes to 6–7% of total CO₂ emissions, according to the International Energy Agency. As a result, several efforts have been made in recent decades to limit or eliminate the usage of Portland cement in concrete. Geopolymer has garnered a lot of attention among the numerous alternatives due to its early compressive strength, low permeability, high chemical resistance, and great fire-resistant behaviour. This study looks at the strength and microstructure of geopolymer based on fly ash and a combination of metakaolin and fly ash. Compressive strengths were measured at 7, 14, and 28 days, and microstructure was examined using SEM and XRD

    A comparison of high temperature fatigue crack propagation in various sub-solvus heat treated turbine disc alloys

    No full text
    The microstructure and fatigue performance of three sub-solvus heat treated nickel based disc superalloys for turbine disc applications are reported. The alloy variants studied are RR1000, N18 and Udimet 720 Low Interstitial (U720Li), with the latter tested both in a standard and large grain variant (LG). Their microstructures are examined in terms of grain and gamma prime size. Fatigue crack growth (FCG) rates for all materials at 650ÂşC show that RR1000 provides the best performance, followed by U720Li-LG, N18 and U720Li. In general, the failure modes become increasingly intergranular with increasing ?K. Some of the variations in FCG rate between the alloys are due to reduction in grain boundary oxidation processes with increased grain size, but more subtle interplays between grain boundary character, alloy composition and slip character are also importan

    Effects of initial flow velocity fluctuation in event-by-event (3+1)D hydrodynamics

    Full text link
    Hadron spectra and elliptic flow in high-energy heavy-ion collisions are studied within a (3+1)D ideal hydrodynamic model with fluctuating initial conditions given by the AMPT Monte Carlo model. Results from event-by-event simulations are compared with experimental data at both RHIC and LHC energies. Fluctuations in the initial energy density come from not only the number of coherent soft interactions of overlapping nucleons but also incoherent semi-hard parton scatterings in each binary nucleon collision. Mini-jets from semi-hard parton scatterings are assumed to be locally thermalized through a Gaussian smearing and give rise to non-vanishing initial local flow velocities. Fluctuations in the initial flow velocities lead to harder transverse momentum spectra of final hadrons due to non-vanishing initial radial flow velocities. Initial fluctuations in rapidity distributions lead to expanding hot spots in the longitudinal direction and are shown to cause a sizable reduction of final hadron elliptic flow at large transverse momenta.Comment: 17 pages in RevTex, 18 figures, final version published in PR
    • …
    corecore